Platelet-derived growth factor and fibroblast growth factor differentially regulate interleukin 1beta- and cAMP-induced nitric oxide synthase expression in rat renal mesangial cells.

نویسندگان

  • D Kunz
  • G Walker
  • W Eberhardt
  • U K Messmer
  • A Huwiler
  • J Pfeilschifter
چکیده

Platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) regulate mesangial cell proliferation and matrix production in vitro and in vivo and crucially participate in the pathogenesis of glomerulonephritis. We investigated whether PDGF-BB and bFGF influence nitric oxide (NO) production, another important effector molecule in inflammatory glomerular injury. Inducible NO synthase (iNOS) induction in rat glomerular mesangial cells has been described in response to two principal classes of activating signals comprising inflammatory cytokines such as interleukin 1beta (IL-1beta) or elevation of cyclic AMP (cAMP). Treatment of mesangial cells with IL-1beta induces iNOS activity measured as nitrite levels in cell culture supernatants. Coincubation of mesangial cells with PDGF-BB inhibits production of nitrite by approximately 95%. This effect can be reversed by the simultaneous incubation of PDGF-BB in the presence of calphostin C, a potent and selective inhibitor of protein kinase C. In contrast, incubation of cells in the presence of bFGF potentiates IL-1beta-induced production of NO and is functionally associated with an increased rate of apoptosis of mesangial cells. Western blot analyses reveal that PDGF-BB causes a decrease in the formation of iNOS protein which is preceded by decreases in iNOS mRNA steady state levels. bFGF drastically increases iNOS protein levels as well as the corresponding iNOS mRNA steady state levels. Nuclear run-on experiments reveal that PDGF-BB decreases the IL-1beta-induced transcription rate of the iNOS gene, whereas bFGF potentiates the transcriptional activity of the iNOS gene. Northern blot analyses demonstrate that bFGF strongly potentiates the formation of IL-1beta-induced IL-1 type I receptor mRNA levels, whereas PDGF-BB has no effect. Treatment of mesangial cells with the membrane-permeable cAMP analogue N6, O-2'-dibutyryladenosine 3',5'-phosphate (Bt2cAMP) markedly increases the production of nitrite. Whereas PDGF-BB does not affect cAMP-induced nitrite levels, bFGF strongly potentiates them. PDGF-BB alters neither cAMP-induced iNOS protein levels nor the corresponding iNOS mRNA steady state levels. By contrast, bFGF superinduces cAMP-stimulated iNOS protein and iNOS mRNA levels. These changes by bFGF are due to an increase in cAMP-induced transcriptional activity of the iNOS gene which is not affected by PDGF-BB. In summary, the results show that PDGF and bFGF differentially regulate iNOS expression in mesangial cells in a stimulus-specific way. The timely sequence of expression of PDGF and bFGF and of cytokines like IL-1 will crucially determine the amounts of NO produced and the functional consequences thereof in the course of progressive glomerular diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential regulation of vascular endothelial growth factor and its receptor fms-like-tyrosine kinase is mediated by nitric oxide in rat renal mesangial cells.

Under conditions associated with local and systemic inflammation, mesangial cells and invading immune cells are likely to be responsible for the release of large amounts of nitric oxide (NO) in the glomerulus. To further define the mechanisms of NO action in the glomerulus, we attempted to identify genes which are regulated by NO in rat glomerular mesangial cells. We identified vascular endothe...

متن کامل

Biglycan, a nitric oxide-regulated gene, affects adhesion, growth, and survival of mesangial cells.

During glomerular inflammation mesangial cells are the major source and target of nitric oxide that pro-foundly influences proliferation, adhesion, and death of mesangial cells. The effect of nitric oxide on the mRNA expression pattern of cultured rat mesangial cells was therefore investigated by RNA-arbitrarily-primed polymerase chain reaction. Employing this approach, biglycan expression turn...

متن کامل

Platelet-Derived Growth Factor Suppresses and Fibroblast Growth Factor Enhances Cytokine-Induced Production of Nitric Oxide by Cultured Smooth Muscle Cells

Stimulation of thymidine incorporation by basic fibroblast growth factor or epidermal growth factor treatment of cultured quiescent smooth muscle cells (rat and human) was attenuated by the concomitant treatment with interleukin-1, in the presence of indomethacin. Platelet-derived growth factor-AB and -BR-induced thymidine incorporation was not inhibited by the presence of the cytokine under si...

متن کامل

Bone Marrow Stromal Cell Transdifferentiation into Oligodendrocyte-Like Cells Using Triiodothyronine as a Inducer with Expression of Platelet-Derived Growth Factor α as a Maturity Marker

Background: The present study investigated the functional maturity of oligodendrocyte derived from rat bone marrow stromal cells (BMSC). Methods: The BMSC were isolated from female Sprague-Dawley rats and evaluated for different markers, such as fibronectin, CD106, CD90, Oct-4 and CD45. Transdifferentiation of OLC from BMSC was obtained by exposing the BMSC to DMSO and 1 µM all-trans-retinoic a...

متن کامل

Potentiation of nitric oxide synthase expression by superoxide in interleukin 1 beta-stimulated rat mesangial cells.

Exposure of mesangial cells to superoxide, generated by the hypoxanthine/xanthine oxidase system or by the redox cycler 2,3-dimethoxy-1,4-naphthoquinone caused a concentration-dependent amplification of interleukin (IL)-1beta-stimulated nitrite production. The effect of superoxide was accompanied by an increase in inducible nitric oxide synthase (iNOS) protein and iNOS mRNA levels. Incubation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 100 11  شماره 

صفحات  -

تاریخ انتشار 1997